Conditional stability for ill - posed elliptic Cauchy problems : the case of Lipschitz domains ( part II )
نویسنده
چکیده
This paper is devoted to a conditional stability estimate related to the ill-posed Cauchy problems for the Laplace’s equation in domains with Lipschitz boundary. It completes the results obtained in [4] for domains of class C. This estimate is established by using an interior Carleman estimate and a technique based on a sequence of balls which approach the boundary. This technique is inspired from [2]. We obtain a logarithmic stability estimate, the exponent of which is specified as a function of the boundary’s singularity. Such stability estimate induces a convergence rate for the method of quasireversibility introduced in [10] to solve the Cauchy problems. The optimality of this convergence rate is tested numerically, precisely a discretized method of quasi-reversibility is performed by using a nonconforming finite element. The obtained results show very good agreement between theoretical and numerical convergence rates. Key-words: ill-posed problem, conditional stability, Carleman estimate, quasi-reversibility, singular boundary in ria -0 03 24 16 6, v er si on 1 24 S ep 2 00 8 Stabilité conditionnelle pour les problèmes de Cauchy elliptiques mal posés : le cas d’un domaine Lipschitzien (partie II) Résumé : Ce document concerne une estimation de stabilité conditionnelle relative aux problèmes de Cauchy mal posés pour l’équation de Laplace dans un domaine Lipschitzien. Il complète les résultats obtenus dans [4] pour les domaines à bord C. Cette estimation est établie en utilisant une inégalité de Carleman à l’intérieur et une technique basée sur une suite de boules approchant le bord. Cette technique est inspirée de [2]. Nous obtenons une inégalité de stabilité logarithmique, dont l’exposant est précisée en fonction de la singularité du bord. Une telle inégalité de stabilité implique une vitesse de convergence pour la méthode de quasi-réversibilité introduite dans [10] pour résoudre les problèmes de Cauchy. L’optimalité de cette vitesse de convergence est testée numériquement, précisément une discrétisation de la méthode de quasi-réversibilité basée sur un élément fini non conforme est mise en oeuvre. Les résultats obtenus attestent un très bon accord entre les vitesses de convergence théoriques et numériques. Mots-clés : problème mal posé, stabilité conditionnelle, inégalité de Carleman, quasi-réversibilité, bord singulier in ria -0 03 24 16 6, v er si on 1 24 S ep 2 00 8 Conditional stability for ill-posed Cauchy problem 3
منابع مشابه
Conditional stability for ill - posed elliptic Cauchy problems : the case of C 1 , 1 domains ( part I )
This paper is devoted to a conditional stability estimate related to the ill-posed Cauchy problems for the Laplace’s equation in domains with C boundary. It is an extension of an earlier result of [19] for domains of class C. Our estimate is established by using a global Carleman estimate near the boundary in which the exponential weight depends on the distance function to the boundary. Further...
متن کاملThe Stability for the Cauchy Problem for Elliptic Equations *
We discuss the ill-posed Cauchy problem for elliptic equations, which is pervasive in inverse boundary value problems modeled by elliptic equations. We provide essentially optimal stability results, in wide generality and under substantially minimal assumptions. As a general scheme in our arguments, we show that all such stability results can be derived by the use of a single building brick, th...
متن کاملMethod of Lines Approximations to Cauchy Problems for Elliptic Equations in Two Dimensions
In this paper, the method of lines approximation for a rather general elliptic equation containing a diffusion coefficient is considered. Our main results are the regularization of the ill-posed Cauchy problem and the proof of error estimates leading to convergence results for the method of lines. These results are based on the conditional stability of the continuous Cauchy problem and the appr...
متن کاملConditional Stability Estimates for Ill-posed Pde Problems by Using Interpolation
The focus of this paper is on conditional stability estimates for illposed inverse problems in partial differential equations. Conditional stability estimates have been obtained in the literature by a couple different methods. In this paper we propose a method called interpolation method, which is based on interpolation in variable Hilbert scales. We are going to work out the theoretical backgr...
متن کاملAn ill-posed boundary value problem for the Helmholtz equation on Lipschitz domains
The paper is concerned with properties of an ill-posed problem for the Helmholtz equation when Dirichlet and Neumann conditions are given only on a part Γ of the boundary ∂Ω. We present an equivalent formulation of this problem in terms of a moment problem defined on the part of the boundary where no boundary conditions are imposed. Using a weak definition of the normal derivative, we prove the...
متن کامل